斯坦福大学团队研发出3D打印心脏血管网络快速成型技术
当前,人类在生产大规模生物制造器官时,面临血管化和灌注不足的重大挑战,尤其是为任意复杂几何形状设计和打印能满足充分灌注的血管网络极为困难。现有方法如晶格设计难以复现天然血管拓扑和血流动力......
当前,人类在生产大规模生物制造器官时,面临血管化和灌注不足的重大挑战,尤其是为任意复杂几何形状设计和打印能满足充分灌注的血管网络极为困难。现有方法如晶格设计难以复现天然血管拓扑和血流动力......
导读:体积光固化3D打印技术,虽然商业化应用方面还处于早期,但是近两年不断冒出新的突破性的技术成果。 2025年7月18日,洛桑联邦理工学院 (EPFL)和乌普萨拉大学的研究人......
2025年7月18日,德克萨斯大学阿灵顿分校(UTA)的一位生物工程教授正在开发一种旨在促进心肌再生的 3D 打印贴片。项目旨在为心脏病发作幸存者提供一种潜在的新治疗方案,以应对一项关......
航空航天是当今世界科技强国竞相发展的重点方向之一,其发展离不开兼具轻量化、难加工、高性能等特征的金属构件。激光增材制造为高性能金属构件的设计与制造开辟了新的工艺途径,可解决航空航天等领域发......
随着航空航天、半导体、核能等高精尖领域的迅猛发展,对材料性能的要求日益严苛,耐高温、耐腐蚀、高刚性与高强度已成为关键性能指标。作为复杂陶瓷部件制造的核心手段,增材制造(AM)技术正受到......
2025年7月17日,荷兰格罗宁根大学的研究人员开发了一种低成本、可扩展的方法,利用3D打印模型、振动分析和机器学习来检测风机叶片的故障。该研究通过使用PLA材料制作的NREL 5MW叶片......
在现代工业中,铜作为一种关键的金属材料,凭借其优异的导电性、导热性和耐腐蚀性,在航空航天、电气电力、汽车制造等多个领域发挥着不可或缺的作用。然而,随着金属3D打印技术的蓬勃发展,如何实现......
导读:从俄乌战争的一些视频当中,我们看到无人机发挥了越来越大的作用。要想快速的制造无人机,可以使用3D打印技术来实现。 2025年7月16日,专注于“箱式工厂”无人机制造模式的初创企业 Fi......
2025年7月17日,来自格拉斯哥大学的研究人员开发出了一种 3D 打印智能塑料结构,它可以感知何时被拉伸、压缩或损坏,并做出相应调整。这些智能晶格由碳纳米管 (CNT) 增强的高性能塑......
2025年7月17日,来自爱尔兰皇家加拿大医学与健康科学大学(RCSI)的一个研究小组开发了一种 3D 打印植入物,可以向脊髓受伤部位传递电刺激,为修复神经损伤提供了一种潜在的新途径。......
轻质高强铝合金,尤其是2195 Al-Cu-Li合金,因其优异的比强度、耐腐蚀性和低温性能,已成为航空航天领域的关键材料,尤其是在运载火箭燃料箱的制造中被大量采用。然而,传统的铸锻及焊......
在2025年威尼斯建筑双年展上,混凝土雕塑作品《表里二元》展示了彩色氧化铁颜料在3D打印建筑中的创新应用。该作品由埃因霍芬理工大学助理教授克里斯蒂娜·南(Cristina Nan)和建筑......
总部位于华盛顿特区的生物技术公司Nanochon,专注于开发创新的骨科医疗器械解决方案。Nanochon公司正在研发一种新的软骨治疗方法,利用3D打印技术,为关节损伤的患者提供无需昂贵且......
随着人工智能军备竞赛导致能源需求的不断上升,计算需求的管理面临着前所未有的挑战。每次查询ChatGPT这样的工具,成本已经攀升至0.36美元,这促使行业加速探索新的计算模式。一方面,......
柔性触觉传感器是构建智能机器人、可穿戴设备与人机交互系统的关键基础器件。面对高剪切应力、大变形等复杂工况,多层柔性传感器器件常面临界面脱层、信号不稳定等技术瓶颈。为实现“既牢固又灵敏”的......
2025年7月15日,来自列日大学的一组科学家开发出一种创新聚合物PHOx,它可以显著提高植入式医疗设备的安全性,同时更加环保。△通过PHOx 注塑成型获得的心脏瓣膜假体 相关研究成果以题......
2025年7月15日,加拿大麦克马斯特大学的衍生公司TessellaBiosciences开发了一种新型生物墨水,使科学家能够 3D 打印出能够像真实肺一样扩张和收缩的软肺组织。 这种材料......
增材制造在生产轻量化结构方面潜力巨大,能以单一系统制造复杂几何形状的零件,有助于减轻车辆质量,降低行驶阻力,增加电动汽车续航里程,因而受到行业关注。激光定向能量沉积(DED-LB)是一种用......
近年来,由于其高比刚度和强度,干纤维束增强聚合物基复合材料(CFRPCs)在研究和应用中引起了广泛关注。CFRPCs已广泛应用于航空航天、汽车、土木工程和其他工程领域。然而,传统的制造工艺......
数字光处理(DLP)制造的丝素蛋白(SF)微针(MNs)在透皮应用中潜力巨大,但临床转化面临两大挑战:制造精度不足,难以实现结构分辨率;机械强度不够,无法有效穿透表皮。 来自苏州大学纺......