详解5种金属3D打印技术(3)
选区激光熔化(SLM)
SLM 的思想最初由德国Fraunhofer研究所于1995年提出,2002年该研究所对SLM 技术的研究取得巨大的成功。世界上第一台SLM设备由英国MCP集团公司下辖的德国 MCP-HEK 分公司已于 2003 年底推出。为获取全致密的激光成形件,同时也受益于2000年之后激光快速成形设备的长足进步(表现为先进高能光纤激光器的使用、铺粉精度的提高等),粉体完全熔化的冶金机制被用于金属构件的激光快速成形。例如,德国著名的快速成形公司EOS公司,是世界上较早开展金属粉末激光烧结的专业化公司,主要从事SLS金属粉末、工艺及设备研发。而该公司新近研发的EOSINTM270/280型设备,虽继续沿用“烧结”这一表述,但已装配200W光纤激光器,并采用完全熔化的冶金机制成形金属构件,成形性能得以显著提高。目前,作为SLS技术的延伸,SLM术正在德国、英国等欧洲国家蓬勃发展。即便继续沿用“选区激光烧结”(SLS)这一表述,实际所采用的成形机制已转变为粉体完全熔化机制。
选区激光熔化的原理
SLM技术是在SLS基础上发展起来的,二者的基本原理类似。SLM技术需要使金属粉末完全熔化,直接成型金属件,因此需要高功率密度激光器激光束开始扫描前,水平铺粉辊先把金属粉末平铺到加工室的基板上,然后激光束将按当前层的轮廓信息选择性地熔化基板上的粉末,加工出当前层的轮廓,然后可升降系统下降一个图层厚度的距离,滚动铺粉辊再在已加工好的当前层上铺金属粉末,设备调入下一图层进行加工,如此层层加工,直到整个零件加工完毕。整个加工过程在抽真空或通有气体保护的加工室中进行,以避免金属在高温下与其他气体发生反应。SLM与DMLS的界限目前很模糊,区别不明显, DMLS技术虽翻译为金属的烧结,实际成型过程中多数时候已将金属粉末完全熔化。DMLS技术使用材料都为不同金属组成的混合物,各成分在烧结(熔化)过程中相互补偿,有利于保证制作精度。而SLM技术使用材料主要为单一组分的粉末,激光束快速熔化金属粉末并获得连续的扫描线。
选区激光熔化技术的发展问题
激光选区成形件中,Fe基合金(主要是钢)SLM成形研究较多,但SLM成形工艺尚需优化、成形性能尚需进一步提高;对SLM成形性能(特别是占基础地位的致密度),目前SLM成形的钢构件通常难以实现全致密。解决钢材料SLM成形的致密化问题,是快速成形研究的关键性瓶颈问题。钢材料激光成形的难度,主要取决于钢中主要元素的化学特性。基体元素Fe及合金元素Cr对氧都具有很强的亲和性,在常规粉末处理和激光成形条件下很难彻底避免氧化现象。因此,在SLM过程中,钢熔体表面氧化物等污染层的存在,将显著降低润湿性,引起激光熔化特有的冶金缺陷球化效应及凝固微裂纹,从而显著降低激光成形致密度及相应的机械性能。另一方面,钢中C含量是决定激光成形性能的又一个关键因素。通常,过高的C含量将对激光成形性产生不利,随C含量升高,熔体表面C元素层的厚度亦会增加。这与氧化层的不利影响类似,也会降低润湿性,导致熔体铺展性降低,并引起球化效应。此外,在晶界上形成的复杂碳化物会增大钢材料激光成形件的脆性。因此,通常对钢材料SLM成形,需提高激光能量密度及SLM成形温度,可促进碳化物的溶解,也可使合金元素均匀化。
(责任编辑:admin)