微纳3D打印金属在半导体测试和封装领域的创新应用
时间:2024-08-05 13:25 来源:PuSL摩方高精密 作者:admin 阅读:次
据Statista预测,到2029年,全球半导体市场规模将从2024年的607 亿美元增长至980 亿美元,年复合增长率为14.9%。作为尖端技术的半导体芯片,其制造过程极其复杂,主要包括以下几个关键步骤:晶圆制备、光刻、刻蚀、薄膜沉积、离子注入、封装测试。每个工序都需要严格的控制和精确的测量,任何一个环节的问题都可能导致芯片的损坏或性能下降。因此,半导体制造对设备技术、制造工艺和操作人员的要求都极为苛刻。
半导体芯片加工过程(来源于Lam Research)
高昂的设备投入、材料消耗以及研发开支,共同推高了半导体产品的制造成本。这就要求在确保产品高良率的基础之上,还需寻求降低成本的有效途径,以促进半导体产业的可持续发展。在半导体制造环节中,芯片测试与封装是关键环节之一,加之人工智能的迅速迭代和摩尔定律的放缓,先进的封装技术对于提高芯片的高性能至关重要。传统封装技术面临工艺复杂、热管理失效、材料热膨胀系数不匹配导致的应力问题,易致封装失败。
半导体逻辑器件小型化路线图
在颠覆性创新技术领域,3D打印技术在实现一体化成型,构建微型化的复杂结构具备卓越的优势。通过人工辅助设计优化内部散热结构,提高晶圆台热稳定性,减少晶圆热稳定时间,可有效地提高芯片生产的良率与效率。其中在半导体封装技术中,微纳3D打印技术不仅仅能赋能引线键合、晶圆级封装等常见技术,更是2.5D堆叠、3D
堆叠等新型创新封装技术的第一选择。3D打印技术的加持,可助力测试和封装技术朝着微型化、精密化、高密度引脚、高效散热的方向发展。在半导体测试技术中,Exaddon AG已成功开发了能够以低于20 μm间距进行细间距探测的微纳3D打印探针,克服半导体测试行业面临的间距限制,开辟芯片设计和测试的新可能。其microLED测试阵列直接3D打印在间距低于20 μm的预图案迹线上。该演示器阵列拥有128个探头,X轴最小间距为18.5 μm,Y轴最小间距为9.5 μm,Z轴最小间距为±2 μm。据了解,Exaddon AG的探针阵列的尺寸约为其他公司探针阵列的 10%,使microLED测试仪的效率提高了64倍。
为了保证实现高精度的打印,CERES 系统配备了两台具有计算机辅助对准功能的高分辨率相机,支持自动离子探头装载以及3D打印结构的拍摄录像可视化。
Exaddon AG的3D打印技术在其结构设计、材料选择以及制造流程方面展现出显著的先进性,通过增加成型精度、提升材料成形性、降低生产成本和提高生产可靠性等方面,拓展3D打印技术在半导体行业的应用范围。
在当前全球化的背景下,半导体产业已经成为衡量国际竞争力的关键指标。受到微型化特征和性能优化的驱动,随着像3D堆叠封装以及晶圆级封装的先进技术已经占据了30%的市场,这个动态市场已经见证了巨大的成长。3D打印技术作为新兴力量,突破了传统制造的局限,不断拓宽创新边界,推动全球半导体核心技术研发,共同塑造产业发展的新动能与新优势。
(责任编辑:admin)
最新内容
热点内容