4D打印MXene水凝胶实现高效赝电容储能
时间:2022-11-30 10:17 来源:高分子科学前沿 作者:admin 阅读:次
近日,来自爱尔兰圣三一学院的Valeria Nicolosi教授、李科研究员与美国德雷塞尔大学Yury Gogotsi教授合作,在国际知名期刊Nature Communications上发表题为“4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage”的研究论文。该工作开发了一种通用的4D打印技术(3D打印+时间),能够实现多种MXene水凝胶(Nb2CTx,Ti3C2Tx,Mo2Ti2C3Tx)的可定制化精确制备,且所制备MXene水凝胶表现出高效的赝电容存储能力。
图1. 4D打印MXene水凝胶示意图。由MXene
(Nb2CTx,Ti3C2Tx或者Mo2Ti2C3Tx)、PEDOT:PSS和添加剂(DMSO、H2SO4和L-抗坏血酸钠)组成的复合油墨首先被3D打印成设计图案,经过自组装过程后,MXene溶胶转变为MXene水凝胶。
要点一:4D打印导电MXene水凝胶
与传统3D打印生产的溶剂中可溶/可分散的MXene溶胶图案/结构不同,在我们的4D打印技术中,经过简单的热刺激引起的自组装过程后,MXene溶胶转变为交联态机械强度良好的MXene水凝胶。此4D打印技术具有良好的通用性,能够在多种基底上实现MXene水凝胶的可定制化打印,如在玻璃片上打印Ti3C2Tx水凝胶微晶格和空心矩形,在棉布上打印Nb2CTx水凝胶中国结,以及在PET上打印Nb2CTx水凝胶“CRANN”logo和Mo2Ti2C3Tx水凝胶微型电容器。同时,这些水凝胶都具有3D多孔结构、大比表面积、高导电性和良好的机械强度等优点。更值得关注的是,这三种MXene分别具有不同的原子层厚度和表面过渡金属(Nb, Ti, Mo),代表了一系列具有类似结构和化学性质的MXene,证明此方法具有良好的普适性。
图2. MXene油墨和水凝胶的特性.a
自组装制备不同MXene含量的Ti3C2Tx水凝胶的照片。b-d 三种MXene油墨的的流变性能。e 4D打印MXene水凝胶结构的照片。f-h
Nb2CTx,Ti3C2Tx和Mo2Ti2C3Tx水凝胶的SEM和EDX图像。i
Nb2CTx,Ti3C2Tx和Mo2Ti2C3Tx水凝胶的I-V曲线。j
PEDOT:PSS薄膜和4D打印Ti3C2Tx水凝胶的拉曼光谱。抽滤Ti3C2Tx薄膜和4D打印Ti3C2Tx水凝胶的高分辨率k Ti 2p和l
C 1s XPS光谱。
要点二:4D打印MXene水凝胶电极的快速储能行为
(1)Ti3C2Tx水凝胶在10 V s-1的扫描速度下最高比容量232.9 F g-1。(2)在1 V s-1的扫描速度下,质量负载量/厚度分别为 0.5 mg cm-2(0.12 mm)、3.1 mg cm-2(0.7 mm)、和6.6 mg cm-2(1.5 mm)的Ti3C2Tx水凝胶容量保留率高达96.3%、92.4%、和 90.2%,优于所有电极。(3)在1 V s-1和2 V s-1的扫描速度下,Ti3C2Tx水凝胶的面积比容量高于目前所有的报道和商业化要求(0.6 F cm-2)。
图3. 4D打印Ti3C2TxMXene水凝胶电极的电化学性能。
要点三:4D打印MXene水凝胶微电容
(1)Ti3C2Tx水凝胶微电容最高面积比容量为2.31 F cm-2,最高能量/功率密度为93 μWh cm-2/7 mW cm-2,高于大多数微电容。(2)4D打印的Ti3C2Tx水凝胶微电容表现出良好的低温耐受性,在0℃和-20℃下,容量分别保留90.6%和82.2%。经过多个高低温循环后,容量未见明显下降。即使在-20℃下循环10000圈后,容量保留81%。(3)微电容可按实际使用需求任意串联或者并联。
图4. 4D打印Ti3C2TxMXene水凝胶微电容的电化学性能。
要点四:前瞻
本文开发了一种通用型4D打印技术,能够实现MXene水凝胶的可定制化制备。该工作对MXene水凝胶的制备以及MXene和导电水凝胶在电化学储能与转换、传感、生物电子、电磁屏蔽和污水纯化等多个领域的发展提供了新的思路。
作者简介
李科,爱尔兰圣三一学院Valeria Nicolosi教授课题组博士后研究员。2019年博士毕业于复旦大学高分子科学系,2017-2018年间曾在美国德雷塞尔大学Yury Gogotsi教授课题组交流学习。主要从事二维纳米材料(MXene)及电化学储能的相关研究,以第一作者/通讯作者(包含共同)身份在Nature Reviews Materials, Nature Communications, Chemical Society Reviews, Journal of the American Chemical Society, Advanced Functional Materials, ACS Nano, Nano Energy, Small等学术刊物上发表多篇研究论文。
(责任编辑:admin)
最新内容
热点内容