热门标签-网站地图-注册-登陆-手机版-投稿 3D打印网,中国3D打印行业门户网!
当前位置:主页 > 新闻频道 > 国内动态 > 正文

香港理工大学:通过增材制造的非均质多梯度TiAl合金的卓越强度和延展性

时间:2024-11-09 09:43 来源:材料学网 作者:admin 阅读:
在增材制造过程中,铝的临界扩散行为对于形成多梯度结构至关重要,这种结构在变形过程中表现出梯度应变分配效应。梯度应变分配效应有效地阻碍了裂纹的萌生和扩展,这对于提高材料的断裂韧性至关重要。

香港理工大学陈子斌教授团队的一项工作代表了非均质合金设计和增材制造技术交叉领域的一个重要进展。通过在增材制造过程中精确控制铝(Al)的扩散,团队成功地创建了具有独特成分梯度和结构梯度的非均质多梯度结构。他们开发的多梯度α-Ti/Ti-10Al结构不仅在提高材料强度的同时保持了良好的延展性,而且还展示了如何通过精确控制微观结构来优化合金的性能。



α-钛(α-Ti)主要与α-稳定剂(如O, N和Al)相关。它具有一系列卓越的性能:出色的可焊性,明显的缺口韧性,优越的比强度和良好的延展性(超过20%),使其特别适用于对延展性要求极高的应用。然而,良好的延展性主要存在于非合金α-Ti或低合金α-Ti中,这类合金的强度仍然相对较低。为了提高其强度以满足具体实际应用的要求,加入合适含量的α-稳定元素势在必行。然而,这种强度的提高经常被延性的急剧下降所抵消,这就是强度-延性权衡困境的例证。现有文献强调,少量加入氧气或铝会导致延展性受损,同时也会增加强度——在引入0.3wt%氧气或4.0wt%铝时,延展性下降200%。因此,建立一种经济的制造模式,在不显著影响延展性的情况下增强强度,对于推进α-Ti的结构应用仍然至关重要。

最近,异质结构材料作为一种非常有前途的候选材料,通过巧妙地整合适当的微观结构设计,实现了强度和延展性的卓越结合,这一重大进展使异质结构材料成为人们关注的焦点。因此,这提高了强度和应变硬化能力,同时最大限度地降低了延性。在之前的一项研究中,Li等人通过退火和热压技术成功制备了一种异质结构的纯钛(Ti),其特点是粗晶粒和细晶粒交替存在,其强度明显增强,从292 MPa上升到354mpa,同时保持了可观的延展性,与粗晶粒相比,仅从54%下降到53%。同样,Wu等人强调了非对称轧制和部分再结晶在非均匀层状结构Ti材料中的强度和延展性的有利协同作用。它具有与粗晶Ti相当的延展性,同时具有与超细晶Ti相似的强度。然而,制作这些异质结构的传统方法具有固有的缺点,包括处理时间长和成本高。当处理复杂的几何形状和在制造过程中精确管理组合调制时,这些挑战变得更加明显,使其实现具有固有的挑战性。

为了应对这些紧迫的挑战,增材制造(AM)已经成为一种很有前途的解决方案,通过复合方法开拓了异质结构的近净形状生产。先前的研究已经证明了AM通过原位成分调整引入非均相微结构的能力。例如,通过激光金属沉积(LMD)制备从Ti- 6al - 4v过渡到Al12Si的功能梯度材料[14],以及通过线弧AM制备不同Ti合金(Ti- 5al - 5v - 5mo - 3cr /Ti- 6al - 4v)的微观结构过渡梯度,其中不同成分的微观结构发生了明显变化。显然,增材制造的出现为探索创新材料设计范式提供了独特的途径,有助于提高近α-Ti合金的整体性能。然而,研究领域仍然面临着巨大的挑战,包括强度的有限提高与明显的延性牺牲,以及由于热膨胀差异、弹性模量差异和屈服强度变化而引起的界面脆化或开裂问题。例如,通过激光AM合成的双相钛合金,特别是TA15和Ti2AlNb,强度从1028 MPa增加到1067 MPa,但明显牺牲了延展性,从13.2%下降到8.0%。类似地,通过AM将Invar 36 (64 wt% Fe, 36 wt% Ni)掺入ti - 6al - 4v合金中,导致金属间相的出现,例如FeTi (B2), Fe2Ti (C14), Ni3Ti (DO24), NiTi2。这最终导致了不良的分层,使其不适合用于结构应用。因此,迫切需要重新设想设计策略,以减轻与界面脆化有关的问题。

最近的研究提出了一种策略,通过结合元素梯度来解决界面脆化问题,以防止过早断裂。例如,Wei等人发现,即使将Ti6Al4V和Inconel 625这两种看似无关的材料组合在一起,仍然可以实现强度和延展性的协同增强。这是由于在这两种材料之间引入了梯度材料过渡,以避免层间的突然过渡。此外,Guan等人发现异质结构层状互变CrMnFeCoNi/AlCoCrFeNiTi0.5复合材料虽然具有两相不同的硬度,但由于软层对裂纹的抑制作用,仍然可以获得无与伦比的强度和延展性。受这些发现的启发,本研究探索了近α-Ti合金的另一种片层结构。它结合了梯度材料的平稳过渡,同时避免了脆性金属间化合物。换句话说,该策略涉及到层状结构Ti- al /Ti异质结构的发展,这是合理的几个令人信服的原因:室温下Al在Ti中的高溶解度降低了形成不良金属间化合物的可能性;2. Al在Ti中的明显扩散可能提供了层间的平滑过渡,防止了可能导致不良分层的热膨胀系数或弹性模量的巨大差异;3. 有充分证据表明,Al在Ti中的强化作用可能导致异质组织合金的高强度。

在这项工作中,香港理工大学的陈子斌教授团队开发了一种多梯度α-Ti/Ti- 10al结构,其特点是强度接近于坚固的Ti- 10al合金,而延展性接近于延展性纯Ti。先进的表征技术已被用来阐明这些特殊性质的综合机制。值得注意的是,在增材制造过程中观察到Al的临界扩散行为,导致出现了一种具有独特成分梯度和结构梯度的新型非均质多梯度结构。非均质多梯度结构施加几何限制,从而在变形过程中表现出梯度应变分配效应,有效地产生额外的加工硬化,阻碍裂纹的萌生和扩展,从而在提高强度的同时保持良好的延性。这种创新的结构设计策略为制造具有卓越强度-延性组合的优质Ti提供了一条有前途的途径,对其他合金可能导致延性降低的合金具有更广泛的影响。

相关研究成果以“Exceptional strength and ductility in heterogeneous multi-gradient TiAl alloys through additive manufacturing”发表在Acta Materialia上。


图1所示。使用LENS™工艺制备均质Ti和TiAl试样以及非均质TiAl试样。(a)采用LENS™技术的打印过程示意图。(b)连续层的印刷策略。(c)非均相TiAl合金的印刷设计。(d1-d3)从构建的均质Ti、均质TiAl和非均质TiAl样品的横截面表面获得的OM图像显示,样品内部几乎没有孔隙形态。

图2所示。粉末和成品样品的相组成。(a)接收CP-Ti和预合金Ti-54Al粉末的XRD谱图。(b)在平行于构建方向的横截面表面上观察到的均相Ti、均相TiAl和非均相TiAl样品的XRD图谱。

图3所示。室温下均质Ti、均质TiAl和非均质TiAl的力学性能(a)工程应力-应变曲线。(b)与迄今为止报道的其他高强度α-Ti合金(包括SLM CP-Ti , SLM HDH-Ti, SLM TiNX, DED CP-Ti[34,35]和PM TiAlx)的屈服强度和总伸长率的比较。

图4所示。显微硬度在建筑距离上的分布。

(责任编辑:admin)

weixin
评论
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价: