如何设计更加耐用的3D打印零部件(二)
在上一篇《如何设计更加耐用的3D打印零部件(一)》中,我们介绍了几种简单有效的方法来预测并提升零件的承载能力。想必大家都觉得很实用,但我们通常仍会忽略机械零件在变形后可能引发的结构性问题。毕竟任何会随机变形的结构,并不会比碎片好多少。
我们延续之前的部分,一次说个清楚吧。
坚硬度
任何材质受力后,不免都会弯曲。为了厘清弯曲的原因,不妨回想上一篇的模型,也就是那个简陋的横木。
横木一侧受力后的弯曲情形
横木受力后的弯曲度(d),计算公式如下:
d = Fbend* L3 / ( 3 * E * Ix )
我们看这个公式就会明白箇中原理。首先,弯曲系数(E)是给定的常数,每一种材质都有各自的弯曲系数,表示承力和变形的关系,在产品规格表中都会列出来。此外,弯曲度似乎跟施力(F)呈线性比例关系,也跟横木长度(L)成正比,这些都在意料之中。
真正有趣的是,弯曲度跟截面矩(Ix)成反比,换言之,其他参数保持恒定之下,截面矩直接决定零件的坚硬度。我们在上一篇文章提过,截面矩是横木横剖面的物质分布情况。
当然,这个公式并无法透露太多玄机,我们再回到上一篇的截面矩公式:
Ix = w * h3 / 12
原来如此!矩形横木的坚硬度不仅跟宽度(w)成正比,也跟厚度(h)成正比。这个公式仅适用于矩形横剖面,但其他类似形状也有这样的特性。
虽然数学计算有点枯燥,但试着回想上一篇介绍的实验,我们把零件的承载能力提升为三倍,以下是一些解决方式对截面矩的影响:
1. 把宽度增加三倍。既然宽度(w)以线性的方式左右整个方程式,宽度增加三倍,坚硬度也会提升三倍,这应该没什么好意外的。
2. 第二个方式是把厚度(h)从1mm增为1.73mm,截面矩因此增加1.733 / 13 ≈ 5.18倍,换言之,只要调整一点点厚度,不仅变得更坚固,坚硬度还提升了五倍,很有趣吧?
3. 第三个方式是打造工字梁,我之前说过工字梁的截面矩难以计算,但利用CAD软件或在线计算器即可得出Ix数值变化,马上就能确认截面矩从原本~0.417 mm⁴ 变成~3.246 mm⁴,几乎快增加了八倍。这是惊人的成长,比我们原本预计的承载能力好太多了。
稍微调整零件的形状,一来可降低其重量,二来提升承载能力,就算是丙烯腈(ABS)和聚醚醚酮(PEEK)等高阶材料,也不一定能够达到这个境界,事实上,就连铝材也没有这种能耐。
这就是所谓工业设计技法:无须航天级材质,只要简单的招数,即可让塑胶零件兼具耐用、坚固、轻量和小巧等优点。
棘手的大问题:耐冲击强度
原则上,从抗弯曲强度、抗张强度和抗压缩强度,大致可以看出特定材质的性能,但现实总是跟理想有差距,如果你具有冒险精神,不妨拿着聚丙烯纤维制成的保鲜盒跑到家门口,把保鲜盒直接砸向水泥墙:它会弹回来。现在试试看有机玻璃材质的保鲜盒,它只会碎成一片片。这听起来没什么道理:有机玻璃的抗弯曲强度明明是聚丙烯纤维的两倍!这显然事有蹊跷。
原来是聚合物承受突如其来的局部冲击时,难免无法实时分散那一股能量,这有点像水和淀粉的经典实验,一不小心发生碰撞就毁了。为了计算塑胶能应付多少撞击,工程师设计一种相对简略的方法,称为「耐冲击强度测试」,专门测量材料遭到摆锤撞击时会丧失多少能量,不过这个数值跟抗弯曲强度并没有一定的关系,却是比较各种物质坚硬度的权宜之计。
有缺口的塑胶正在进行冲击测试我们等一下会再探讨各种物质的测试结果,现在先来关注一个小细节:测试样本的缺口。缺口的位置具有特殊意义,必须是张力最大的地方,否则几乎所有材料都能够通过测试而没有测试的必要了。
这提醒我们一个设计小诀窍:工业设计师都会尽量避免明显的弯角和缺口,让物件能承受突来或持续的压力。有一个常见的解决方法是加上内圆角或毂板来分散压力。
内圆角和毂板可分散局部压力
内圆角和毂板成本并不高,因此不管如何都会添加,否则光凭我们目前的算式,根本无法评估必要性,反之还要动用艰涩的有限元素分析工具,所以最好养成添加这些舒压物件的习惯。
内圆角和毂板可加强外壳的耐冲击强度
既然如此,材质到底重不重要?
材质当然重要!不过想要提升承载能力,与其改用高阶原型材料,还不如实行这里所介绍的设计技巧,但若有先天不良的问题,例如基座不符合你的需要,那你就必须更常游走在临界边缘。
让我们来看看几种常见原型塑胶的属性,以及它们在生活中的用途。
这个表格并不是绝对正确的,毕竟相同的聚合物也分成不同的等级,最终属性也会随着填充物、塑化剂等结构内部物质而改变,但这些数字至少让你对于承载能力有个基本概念。
有趣的是,这些资料也透露出DIY专题材料的几个侷限,例如热熔挤制技术(FDM)常用的聚乳酸(PLA)本身就容易损坏,于是3D打印材料制造商会添加塑化剂或共聚物来提升冲击抗力,却可能大幅降低抗弯曲强度和坚硬度。
低成本FDM制程经常使用聚乳酸(PLA)和ABS树脂,其所标榜的平均强度通常也会因为沈积过程而减弱:不管是黏合层、纤维丝厚度、沈积瑕疵,皆可能严重损害最终原型的表现。
CNC业余玩家常用的材料也不一定比较好,高密度聚乙烯(HDPE)所制成的零件很轻薄,优点是弹性佳,缺点是不适合精密机械工程。另一种常见材料是有机玻璃,从各方面来看都是不凡的塑料,冲击抗力却低到不行,就连在加工过程中也存在应力开裂之虞。
总体来说,3D打印机和CNC业余玩家经常挑选低廉而常见的材料,因为其他更好的选择要不是难以取得,就是难以处理,这也是我大推CAD树脂铸制的原因,这让业余玩家能尽量趋近于现今工程塑胶的境界。
既然这样……该怎么比较铸制树脂?
答案很简单:看情况。下列表格介绍一些热门的聚氨酯(polyurethane) 铸制树脂,外加两个有代表性的产品,以聚脂(polyester)和环氧(epoxy)树脂制成。
本质上,锁定DIY玩家的铸制树脂,大多容易损坏或抗弯曲强度不足,但也不是没有优点,毕竟这类树脂通常容易处理,况且从艺术创作方面来说,机械属性并没有那么重要。
市面上部分聚氨酯(polyurethanes)比尼龙等工程塑胶更好用,甚至逐步赶上超级聚(醚/醚/酮) (PEEK)。最重要的是,使用者不费吹灰之力,就能大幅调整铸制树脂的表现:例如添加磨碎的玻璃纤维,可提升抗弯曲强度、加倍弯曲系数,但可能有损冲击抗力。
结论
设计零件不能单凭直觉,就连最简单的专题也需要大量的知识和实践经验。这也难怪DIY日常用品难敌工厂商品,不但不容易做起来,也没有想象中省钱。 高阶机械工程和材料科学可能吓跑不少人,但就算没有PRN计算器和计算尺,还是有不少单纯和直觉的构想能成功实现。当然,跟制造业取经,学会这些工业设计技巧,而不是把制造业当作夕阳产业,对我们是有所助益的。
(责任编辑:admin)